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Based on the standard angular momentum theory, we create an experiment on preparing maximally path-
entangled ðjN ; 0i þ j0;N iÞ2 (NOON) states of triphotons. In order to explain the error between the theoretical
and experimental data, we consider the background events during the experiment, and observe their effect on the
uncertainty in Ŝ1. Afterwards, we calculate the quantum Fisher information (QFI) of the states to evaluate their
potential applications in quantum metrology. Our results show that by adding the appropriate background
terms, the theoretical data of the produced states matches well with the experimental data. In this case, the
QFI of the states is lower than maximally entangled NOON states, but still higher than a classical state.
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Polarization squeezing and the quantum entanglement of a
light field have been concerns for decades because of their
significance in fundamental physics and its potential
applications in quantummetrology and quantum informa-
tion[1–6]. Formally, squeezing is defined as a reduction of the
polarization uncertainty below the shot-noise limit, which
is the standard quantum limit imposed by the Heisenberg
uncertainty relationship. It is generally thought that
squeezing, which is closely related tomultipartite entangle-
ment, arises from the quantum correlation effect among
individual particles[7–10]. Quantum metrology based upon
maximally entangled ðjN ; 0i þ j0;NiÞ2 (NOON) states
leads to super-resolving phase estimations[11,12]. However,
an ideal optical source of entangled states is still unattain-
able because of technical difficulties[13]. By applying various
state-projection measurements, a lot of groups have real-
ized few-photon NOON states so far[4,14–18]. In particular,
Shalm et al. have succeed in preparing maximally en-
tangled NOON states of triphotons[18]. They looked into
the uncertainty in the Stokes parameters, but we found
that there is a certain degree of error between the theoreti-
cal curve and the experimental data, indicating that the
obtained states are not pure NOON states. To explain
the error, in this Letter, we theoretically study the produc-
ing process of the triphotons and add background terms
into the states.
Since the obtained states are not pure NOON states, its

capacity as an input state in phase estimations may de-
crease, which needs to be measured. A typical phase esti-
mation includes three steps[19]. First, the input state of the
sensor, described by its density operator ρ̂in, is prepared.
Then, the sensor undergoes the phase-dependent dynami-
cal process ÛðϕÞ and evolves to the output state ρ̂out.
Finally, a measurement is made of the output state, and
the outcome x is used by suitable data processing to pro-
duce an unbiased estimator ϕ̂ðxÞ of the parameter ϕ.
The precision of the estimation is described by the standard
deviation δϕ ¼ h½ϕ̂ðxÞ− ϕ�2i, which is determined by ρ̂in
and ÛðϕÞ, the observable being measured, and the specific

data-processing technique. The precision of the estimator
ϕ̂optðxÞ from optimal data processing is limited by the
Cramer–Rao inequality[20,21] as ϕ̂opt ≥ 1∕

�����������
FðϕÞp

, where
FðϕÞ is the classical Fisher information, determined by
ρ̂in and Û ðϕÞ, and the measurement scheme. Given ρ̂in and
Û ðϕÞ, maximizing FðϕÞ over all possible measurements
gives the quantum Fisher information (QFI) FQ and hence
the quantum Cramer–Rao bound δϕmin ¼ 1∕

�������
FQ

p
[20–29]

on the attainable precision to estimate the phase ϕ. There-
fore, for a given Û ðϕÞ, a larger QFI means a better estima-
tion, and thus a better input state. So in this Letter, we
calculate the QFI of the modified states. Our results show
that it decreases in some degree compared to that of the
NOON states.

The outline of this Letter is arranged as follows. Firstly,
we will analyze the process of producing triphoton
states in Shalm’s experiment in detail, adding background
terms into the states to improve the theoretical curve.
After that, the quantum Fisher information of the maxi-
mally entangled triphoton states and modified states
will be calculated respectively. Last, our conclusion will
be presented.

Recently, Shalm et al.[18] succeeded in preparing maxi-
mally entangled NOON states of triphotons. Jin et al.[30]

also analyzed the preparation process in detail, calculating
the mean spin, the squeezing factor, the entanglement
degree, and the relation between the parameters and
triphotons’ characteristics, which gives a good explana-
tion of the work of Shalm et al.

In the experiment[18], a triphoton is produced by placing
a pair of photons from Type II spontaneous parametric
downconversion (SPDC) and a single photon from an
attenuated laser (referred to as a local oscillator (LO))
into the same mode. The mixed light then goes through
a variable partial polarizer (VPP), whose transmissivity
ratio of the horizontal and the vertical mode photons is
adjustable, and a quarter-wave plate (QWP) to get the
desired state. The experimental data[18] and theoretical
curve of the uncertainty in Ŝ1 for the triphoton states
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is presented in Fig. 1. The dots indicate the experimental
data points, while the curve represents the theoretical
result calculated from the desired states. The calculation
process is as follows.
The polarization of a light field can be described by

Stokes vectors (c ¼ ℏ ¼ 1)[31]:

Ŝ0 ¼
1
2
ðâ†H âH þ â†V âV Þ ¼

1
2
ðn̂H þ n̂V Þ;

Ŝ1 ¼
1
2
ðâ†H âH − â†V âV Þ ¼

1
2
ðn̂H − n̂V Þ;

Ŝ2 ¼
1
2
ðâ†H âV þ â†V âH Þ ¼

1
2
ðn̂D − n̂AÞ;

Ŝ3 ¼
1
2
ðâ†H âV − â†V âH Þ ¼

1
2
ðn̂R − n̂LÞ; (1)

where âH ;V and â†H ;V are the annihilation and creation op-
erators for the horizontal and vertical polarization modes,
respectively. The vectors Ŝ1, Ŝ2 and Ŝ3 obey SU(2) algebra:
½Ŝα; Ŝβ� ¼ iŜγ with α; β; γ ∈ f1; 2; 3g. For a fixed photon

numberN ¼ 2 s, Ŝ2 ¼ Ŝ2
1 þ Ŝ2

2 þ Ŝ2
3 ¼ sðs þ 1Þ and Ŝ0 ¼ s

are invariant and commute with the other three Stokes op-
erators. Following the standard theory of angular momen-
tum, we choose eigenstates of Ŝ1 and js;ni¼jsþn;s−niH ;V

as the basis of the total Hilbert space, where the photon
number states are defined as usual: jm; niH ;V ¼
ða†H Þmða†V Þnj0i∕

����������
m!n!

p
. The SU(2) angular momentum

states obey Ŝ�js; ni ¼
�����������������������������������ðs∓nÞðs � n þ 1Þp js; n � 1i, with

the ladder operators Ŝ� ¼ Ŝ2 � iŜ3.
We might as well assume that the triphoton is per-

formed by a pair of orthogonally polarized photons and

a horizontally polarized single photon, which means that
the input state of the VPP is ða†2H − a†2V Þa†H j0i. After going
through the VPP, the state is transformed into

jψiVPP ¼ T−Ŝ1ða†2H − a†2V Þa†H j0i

¼ 1���������������
3þ T4

p
� ���

3
p ���� 32 ;

3
2

�
− T2

���� 32 ;−
1
2

��
; (2)

where T ¼ TV∕TH denotes the transmissivity ratio of
photons in the horizontal and vertical modes[18]. After
that, a QWP is adopted to rotate the polarization state
into the basis of Ŝ3, producing a new state[30]:

jψiout ¼ x0ðj3; 0iH ;V − ij0; 3iH ;V Þ
þ y0ðij2; 1iH ;V − j1; 2iH ;V Þ; (3)

where x0 ¼ 1
2

��
3
2

q
1þT2���������
3þT 4

p ; y0 ¼ 1
2
��
2

p 3−T2���������
3þT4

p .

The outcome is apparently a NOON state (one type
of maximally entangled state): jψiNOON ¼

��
2

p
2 ðj3; 0iH ;V −

ij0; 3iH ;V Þ when T ¼ ���
3

p
.

From Eq. (3), the spin fluctuation in Ŝ1, i.e., the fluc-
tuation of the difference between the photon number of
two modes, can be calculated as follows:

ðΔŜ1Þ2 ¼ hŜ2
1i− hŜ1i2 ¼

1
2
ð9x20 þ y20Þ: (4)

In the experiment[18], the uncertainty in Ŝ1 is indicated

by
������������������
4ðΔŜ1Þ2

q
, which corresponds to the dashed curve

in Fig. 1.
As we can see, the theoretical curve roughly matches the

experimental results, but there is still room for improve-
ment, especially when the value of T is large. We suppose
the error is due to the ignorance of the background terms
during the calculation.

A triphoton is produced when a pair of photons from
SPDC and a single photon from the LO are placed into
the same mode. However, because ideal on-demand single-
photon sources are not available, unwanted background
events can occur, wherein the three detected photons
may arise from a different combination of sources. Accord-
ing to Ref. [18], the desired state, which contains a pair of
orthogonally polarized SPDC photons and an LO photon,
has the highest probability to present in the mixed state
(61.7% when T ¼ 1.7). Among the background events,
two states contribute the largest portion in probability,
both of which are generated from three SPDC photons.
For the sake of efficiency, only these two terms are
accounted for the error presented in Fig. 1. These three
events after VPP can be described as
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Fig. 1. Curves give uncertainty in Ŝ1 and
������������������
4ðΔŜ1Þ2

q
as a func-

tion ofTð¼ TV∕TH Þ. The dashed line corresponds to the desired
pure state, while the solid curves represent the mixed states with
background terms taken into consideration. Different colors
means different percentages of the desired state in the mixed
state. The points represent Shalm’s experimental data[18].
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jψ1i ¼T−Ŝ1
1

2
���
2

p â†H ðâ†2H − â†2V Þj0i

¼
���
3

p �� 3
2 ;

3
2

�
−T2

�� 3
2 ;−

1
2

�
���������������
3þT4

p ;

jψ2i ¼T−Ŝ1
1

2
���
2

p ðâ†2H − â†2V Þðâ†H þ â†V Þj0i

¼
���
3

p �� 3
2 ;

3
2

�þT
�� 3
2 ;

1
2

�
−T2

�� 3
2 ;−

1
2

�
−

���
3

p
T3

�� 3
2 ;−

3
2

�
�����������������������������������������
3þT2 þT4 þ 3T6

p ;

jψ3i ¼T−Ŝ1
1

2
���
2

p ðâ†2H − â†2V Þðâ†H − â†V Þj0i

¼
���
3

p �� 3
2 ;

3
2

�
−T

�� 3
2 ;

1
2

�
−T2

�� 3
2 ;−

1
2

�þ ���
3

p
T3

�� 3
2 ;−

3
2

�
�����������������������������������������
3þT2 þT4 þ 3T6

p ; (5)

where jψ1i is the desired state, while jψ2i and jψ3i
represent two background events. Since whether one back-
ground event will occur or not is independent, there should
be no coherence between these three states, so we will
only consider a mixed state whose density operator can
be described as

ρ̂ ¼ λ1jψ1ihψ1j þ λ2jψ2ihψ2j þ λ3jψ3ihψ3j; (6)

where λ1 þ λ2 þ λ3 ¼ 1 and jψki ¼ ak j 32 ; 32i þ bk j 32 ; 12i þ
ck j 32 ;− 1

2i þ dk j 32 ;− 3
2i for k ∈ f1; 2; 3g.

Next, we consider the photons passing through a
QWP[18], which can be described by a unitary operator
expðiπŜ2∕2Þ. Then we obtain

ρ̂QWP ¼ e
iπŜ2
2 ρ̂e

−iπŜ2
2

¼ λ1j ~ψ1ih ~ψ1j þ λ2j ~ψ2ih ~ψ2j þ λ3j ~ψ3ih ~ψ3j; (7)

j ~ψ ki ¼ e
iπŜ2
2 jψki

¼ xk

����� 32 ;
3
2

�
− i

���� 32 ;−
3
2

��
þ yk

�
i

���� 32 ;
1
2

�
−

���� 32 ;−
1
2

��
;

(8)

xk ¼
1

2
���
2

p
�
ak þ i

���
3

p
bk −

���
3

p
ck − idk

	
;

yk ¼
1

2
���
2

p
� ���

3
p

ak − ibk þ ck − i
���
3

p
dk

	
: (9)

The spin fluctuation in Ŝ1 can be calculated as

ðΔŜ1Þ2 ¼ hŜ1i2 − hŜ2
1i ¼

X3
k¼1

λk
2
ð9jxk j2 þ jyk j2Þ: (10)

By substituting Eq. (5) and Eq. (9) into Eq. (10), we
obtain the function

ðΔŜ1Þ2 ¼
λ1ð7T 4 þ 9þ 12T2Þ

4T4 þ 12

þ ð1− λ1Þð9T6 þ 19T4 þ 9þ 19T2Þ
2ðT4 þ 3T6 þ T2 þ 3Þ : (11)

Now, we choose λ1 as 30%, 50%, 70%, and 100% and plot

the uncertainty in Ŝ1,
������������������
4ðΔŜ1Þ2

q
under these conditions in

order to find a value that will fit the experimental data
well. The results are shown in Fig. 1. We get the best result
when λ1 ¼ λ2 þ λ3 ¼ 0.5. So we may take mixed states
under this condition as the actual states. As one can
see, after the background terms are taken into considera-
tion properly, the theoretical curve matches the experi-
mental data better, proving our assumption that the
previous error is caused by background events.

Quantum metrology based upon maximally entangled
NOON states results in super-resolving phase estima-
tions[11,12], showing that the QFI of maximally entangled
states reaches the maximum. To calculate the QFI, we
take the states as the input of a Mach–Zender interferom-
eter, in which case Û ðϕÞ ¼ e−iϕŜ1 . If we overlook the back-
ground terms, the QFI of the pure state jψiout in Eq. (3)
can be calculated as[20–22,24]

FQðjψioutÞ ¼ 4ðΔŜ1Þ2 ¼
7T4 þ 9þ 12T2

T4 þ 3
; (12)

which reaches its peak value FQðjψioutÞmax ¼ 9 when

T ¼ ���
3

p
.Meanwhile, jψiout becomesamaximally entangled

state jψiNOON ¼
��
2

p
2 ðj3; 0iH ;V − ij0; 3iH ;V Þ under this cir-

cumstance. It can also be obtained that FQðjψioutÞmin ¼ 3
when T ¼ 0, and FQðjψioutÞ → 7 when T → ∞.

However, when the background terms are considered,
the triphotons produced should be in a mixed state, reduc-
ing the maximal QFI. For the mixed states described by
ρ̂QWP in Eq. (7), the QFI can also be calculated. After
a phase shift, this state becomes phase dependent[32,33],
described by its density operator

ρ̂ðϕÞ ¼ e−iϕŜ1 ρ̂QWPeiϕŜ1 ¼
X3
k¼1

λk jψkðϕÞihψkðϕÞj; (13)

jψkðϕÞi ¼ e−iϕŜ1 j ~ψkðϕÞi

¼ A1k

���� 32 ;
3
2

�
þ A2k

���� 32 ;
1
2

�

þ A3k

���� 32 ;−
1
2

�
þ A4k

���� 32 ;−
3
2

�
; (14)

A1k ¼ e−i32ϕxk ; A2k ¼ ie−i12ϕxk ;

A3k ¼ −ei
1
2ϕyk ; A4k ¼ −iei

3
2ϕyk : (15)

To calculate the QFIs of mixed states, we here use the
formula given in Ref. [19]:

FQ ¼
X
m

ð∂ϕξmðϕÞÞ2
ξmðϕÞ

þ
X
m

ξmðϕÞFQ;m

−
Xm≠n

m;n

8ξmðϕÞξnðϕÞ
ξmðϕÞ þ ξnðϕÞ

jh∂ϕξmðϕÞjξnðϕÞij2; (16)
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where ξðϕÞ and jξðϕÞi are respectively the eigenvalues and
eigenstates of ρ̂ðϕÞ, and

FQ;m ¼ 4ðh∂ϕξmðϕÞj∂ϕξmðϕÞi− jh∂ϕξmðϕÞjξmðϕÞij2Þ (17)

is the QFI of each eigenstate jξmðϕÞi. To get the specific
eigenstates of ρ̂ðϕÞ, we can expand ρ̂ðϕÞ as

ρ̂ðϕÞ ¼
X4
k¼1

X4
l¼1

ηkl

���� 32 ;
5
2
− k

�

3
2
;
5
2
− l

����; (18)

with ηkl ¼
P3

j¼1 λjAkjA�
lj , which constructs a 4 × 4

matrix η. Supposing that jξmðϕÞi ¼ c1j 32 ; 32iþ c2j 32 ; 12iþ
c3j 32 ;− 1

2iþ c4j 32 ;− 3
2i, we have the eigenvalue equation

ηc ¼ ξc; (19)

where c ¼ ð c1 c2 c3 c4 ÞT .
After solving Eq. (19), we obtain ξðϕÞ and jξðϕÞi, and

thus can calculate the QFI of the obtained triphoton
states numerically. We here give a calculation example
when T approaches infinity. As previously mentioned,
when λ1 ¼ λ2 þ λ3 ¼ 0.5, the mixed states are taken to
be the actual states. By substitutingT → ∞ and λ1 ¼ λ2 þ
λ3 ¼ 0.5 into Eqs. (5), (6), (18) and (9), we can easily get

η ¼

0
BB@

0.25 0.25ie−iϕ 0 0
−0.25ieiϕ 0.25 0 0

0 0 0.25 −0.25ie−iϕ

0 0 0.25ieiϕ 0.25

1
CCA;

(20)

and its two nonzero eigenvalues ξ1 ¼ ξ2 ¼ 0.5, whose cor-
responding eigenvectors are

jξ1ðϕÞi ¼
���
2

p

2
ie−i32ϕ

���� 32 ;
3
2

�
þ

���
2

p

2
e−i12ϕ

���� 32 ;
1
2

�
; (21)

jξ2ðϕÞi ¼ −

���
2

p

2
iei

1
2ϕ

���� 32 ;−
1
2

�
þ

���
2

p

2
ei

3
2ϕ

���� 32 ;−
3
2

�
: (22)

Then we substitute the eigenvalues and eigenvectors into
Eq. (16), and theQFI of themixed states is calculated to be
FQðρ̂QWPÞT→∞ ¼ 5. Similarly, we get FQðρ̂QWPÞT→0 ¼ 3.
Since the quantum Cramer–Rao bound of the

uncertainty in a phase estimation satisfies the relation
δϕCRB ¼ δϕmin ¼ 1∕

�������
FQ

p
, we can also numerically solve

for δϕCRB. The curve of δϕCRB as a function of T is shown
in Fig. 2.
As shown in Fig. 2, the δϕCRB of the mixed states comes

to its minimum ðδϕCRBÞmin ¼ 0.369 as T ¼ 1.28. The
δϕCRB of the mixed states is always less than the shot-
noise limit δSNL ¼ 1∕

���
3

p
, which is the largest value that

could possibly be given by classical states. It is also found
that the produced states have an obvious decline in phase
estimations after considering the background states, as we
presumed. To increase the QFI of the produced states and

improve the estimation quality, the background events
generated during the experiment should be suppressed.

In conclusion, we assume that the inconsistency of the
theoretical curve with the experimental data is mainly
because of ignorance of the background events. After tak-
ing two main background terms into consideration, we
obtain a curve that matches better to the experiment.
Then we calculate the QFI of the mixed states to evaluate
its effect on the phase estimations, and find that its maxi-
mized QFI value is smaller than that of the desired NOON
states, though still lager than ordinary, not-entangled
states.

We thank Prof. G. R. Jin for the helpful discussions.
This work was supported by the National Innovation
Experiment Program for University Students under Grant
No. BJTU 150170042.
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